ON *nB***-ALGEBRAS**

Janez Ušan and Mališa Žižović^{*}

Abstract. In the present paper: 1) we define nB-algebra $(Q; B, \mathbf{e})$ of the type $\langle n, n-2 \rangle$, so that (among others) for n = 2 $(Q; B, \mathbf{e})$ is a *B*-algebra; and 2) nB-algebra $(Q; B, \mathbf{e})$ is described as an *n*-group (Q; A).

1. Introduction

1.1. Definition (Cf. [6]) Let (Q, B) be a groupoid. Let also e be a (fixed) element of the set Q. (Q; B, e) is said to be a B-algebra iff the following laws hold:

- (1) B(x,x) = e, (2) B(B(x,y),z) = B(x,B(z,B(e,y))) and (3) B(x,e) = x.
- **1.2. Proposition:** Let (Q; B, e) be a *B*-algebra. Then the following laws hold: (4) B(B(x, a), B(e, a)) = x $[B(x, a) = u \Leftrightarrow x = B(u, B(e, a))]$ and

$$(5) B(a, B(B(e, b), B(e, a))) = b [B(a, x) = b \Leftrightarrow x = B(B(e, b), B(e, a))].$$

(See, also [6].)

1.3. Definition Let $n \ge 2$ and let $(Q; B, \mathbf{e})$ be an algebra of the type < n, n-2 >. Then, we shall say that $(Q; B, \mathbf{e})$ is a nB-algebra iff the following laws hold:

$$\begin{split} &(\check{1}) \ B(x,a_1^{n-2},x) = \mathbf{e}(a_1^{n-2}), \\ &(\check{2}) \ B(B(x,y,b_1^{n-2}),z,a_1^{n-2}) = B(x,B(z,a_1^{n-2},B(\mathbf{e}(a_1^{n-2}),a_1^{n-2},y)),b_1^{n-2}), \\ &(\check{3}) \ B(B(x,a_1^{n-2},y),a_1^{n-2},B(\mathbf{e}(a_1^{n-2}),a_1^{n-2},y)) = x \ and \end{split}$$

AMS (MOS) Subject Classification 1991. Primary: 06F35, 20N15.

Key words and phrases: B-algebra, nB-algebra, n-group.

^{*}Research supported by Science Fund of Serbia under Grant 1457.

 $(\breve{4}) \ B(a, a_1^{n-2}, B(B(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, b), a_1^{n-2}, B(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, a))) = b.$

1.4. Proposition: Let $(Q; B, \mathbf{e})$ be an nB-algebra. Then the following law holds:

 $(\breve{5}) \ B(B(x,a_1^{n-2},{\bf e}(a_1^{n-2}))=x.$

Proof. Put b = a in ($\check{4}$), we have

 $B(a, a_1^{n-2}, B(B(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, a), a_1^{n-2}, B(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, a))) = a,$ whence, by (Ĭ), we obtain (Š). \Box

1.5. Remark: For n = 2 ($\check{1}$) – ($\check{5}$). reduces, respectively, to following laws: (1), (2), (4), (5), (3).

2. Auxiliary propositions

2.1. Definition [1] Let $n \ge 2$ and let (Q, A) be an n-groupoid. We say that (Q; A) is a Dörnte n-group [briefly: n-group] iff is an n-semigroup and an n-quasigroup as well. (See, also [8].)

2.2. Proposition[4]: Let $n \ge 2$ and let (Q; A) be an n-groupoid. Then, the following statements are equaivalent: (i) (Q; A) is an n-group; (ii) there are mappings $^{-1}$ and \mathbf{e} , respectively, of the sets Q^{n-1} and Q^{n-2} into the set Q such that the following laws hold in the algebra $(Q; A, ^{-1}, \mathbf{e})$ [of the type < n, n - 1, n - 2 >]

 $\begin{array}{l} < n, n-1, n-2 > j \\ (a) \ A(x_1^{n-2}, A(x_{n-1}^{2n-2}), x_{2n-1}) = A(x_1^{n-1}, A(x_n^{2n-1})), \\ (b) \ A(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, x) = x \ and \\ (c) \ A(a_1^{n-2}, a)^{-1}, a_1^{n-2}, a) = \mathbf{e}(a_1^{n-2}); \ and \end{array}$

(iii) there are mappings $^{-1}$ and \mathbf{e} , respectively, of the sets Q^{n-1} and Q^{n-2} into the set Q such that the following laws hold in the algebra $(Q; A, ^{-1}, \mathbf{e})$ [of the type < n, n-1, n-2 >]

$$\begin{array}{l} (\overline{a}) \ A(A(x_1^n), x_{n+1}^{2n-1}) = A(x_1, A(x_2^{n+1}), x_{n+2}^{2n-1}), \\ (\overline{b}) \ A(x, a_1^{n-2}, \mathbf{e}(a_1^{n-2})) = x \ and \\ (\overline{c}) \ A, (a, a_1^{n-2}, (a_1^{n-2}, a)^{-1}) = \mathbf{e}(a_1^{n-2}). \end{array}$$

2.3. Remark: e is an $\{1, n\}$ -neutral operation of n-groupoid (Q; A) iff algebra (Q; A, e) [of the type $\langle n, n-2 \rangle$] satisfies the laws (b) and (\overline{b}) from 2.2 [2]. Operation $^{-1}$ from 2.2. [(c), (\overline{c})] is a generalization of the inverse operation in a group [3]. Cf. [8].

2.4. Proposition[5]: Let $n \ge 2$ and let (Q; B) be an n-groupoid. Let also the following laws

$$\begin{array}{l} (\alpha) \ B(B(x,z,b_1^{n-2}),B(y,a_1^{n-2},z),a_1^{n-2}) = B(x,y,b_1^{n-2}) \ and \\ (\beta) \ B(a,a_1^{n-2},B(B(B(u,a_1^{n-2},u),a_1^{n-2},b),a_1^{n-2},B(B(v,a_1^{n-2},v),a_1^{n-2},a))) = b \end{array}$$

hold in the n-groupoid (Q; B). Then, there is an n-group (Q; A) such that the following equality holds ${}^{-1}A = B$, where

(o) ${}^{-1}A(x, a_1^{n-2}, y) = z \stackrel{def}{\Leftrightarrow} A(z, a_1^{n-2}, y) = x$ for all $x, y, z \in Q$ and for every sequence a_1^{n-2} over Q. (See, also [8]/XIII.)

2.5. Proposition[5]: Let $n \ge 2$ and let (Q; B) be an n-groupoid. Furthermore, let $B = {}^{-1}A$ (cf. (o) from 2.4). Then the (α) and (β) [from 2.4] hold in the n-groupoid (Q; B). Moreover, for all $x, y \in Q$ and for every sequence a_1^{n-2} over Q the following equality holds

$$(\gamma) \ B(x, a_1^{n-2}, y) = A(x, a_1^{n-2}, (a_1^{n-2}, y)^{-1}),$$

where $^{-1}$ is an inverse operation of the n-group (Q; A) [cf. 2.3]. (See, also [8]/VIII,XIII.)

3. Results

3.1. Theorem: Let $n \ge 2$ and let $(Q; B, \mathbf{e})$ be an nB-algebra. Then, there is an n-group $(Q; A, {}^{-1}, \mathsf{E})$ such that the following equalities hold ${}^{-1}A = B$ and $\mathsf{E} = \mathbf{e}$.

Proof. 1) Firstly, we prove that the assumptions the following statements hold:

 1° For all $x,y,a\in Q$ and for every sequence a_1^{n-2} over Q the following implication holds

$$B(x, a_1^{n-2}, a) = B(y, a_1^{n-2}, a) \Rightarrow x = y;$$

 2° For all $x,y,u\in Q$ and for every sequence a_{1}^{n-2} over Q the following equivalence holds

$$(\varepsilon) \begin{cases} B(u, a_1^{n-2}, y) = z \Leftrightarrow \\ u = B(z, a_1^{n-2}, B(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, y)); \end{cases}$$

 $\begin{array}{l} 3^{\circ} \ \text{Law} \ (\alpha) \ \text{from 2.4 holds in the n-groupoid $(Q;B)$; and} \\ 4^{\circ} \ \text{Law} \ (\beta) \ \text{from 2.4 holds in the n-groupoid $(Q;B)$.} \\ \text{Sketch of the proof of $1^{\circ}:$} \\ B(x,a_{1}^{n-2},a) = B(y,a_{1}^{n-2},a) \Rightarrow \\ B(B(x,a_{1}^{n-2},a),a_{1}^{n-2},B(\mathbf{e}(a_{1}^{n-2}),a_{1}^{n-2},a)) = \\ B(B(y,a_{1}^{n-2},a),a_{1}^{n-2},B(\mathbf{e}(a_{1}^{n-2}),a_{1}^{n-2},a)) \overset{(3)}{\Longrightarrow} \\ x = y. \\ \text{Sketch of the proof of $2^{\circ}:$} \\ B(u,a_{1}^{n-2},y) = z \overset{1^{\circ}}{\longleftrightarrow} \\ B(B(u,a_{1}^{n-2},y),a_{1}^{n-2},B(\mathbf{e}(a_{1}^{n-2}),a_{1}^{n-2},y)) = \\ \end{array}$

 $B(z, a_1^{n-2}, B(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, y)) \xrightarrow{(3)} u = B(z, a_1^{n-2}, B(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, y)).$ The proof of 3° : Put (ε) /from 2°/ in (Ž), we obtain $B(B(x, y, b_1^{n-2}), B(u, a_1^{n-2}, y), a_1^{n-2}) = B(x, u, b_1^{n-2}),$ i.e., (α) from 2.4. The proof of 4° :

Put ($\check{1}$) in ($\check{4}$), we have (β) from 2.4.

2) Finally, the following statement also holds:

5° There is an *n*-group $(Q; A, {}^{-1}, \mathsf{E})$ such that the following equalities hold

a) $^{-1}A = B$; and b) E = e.

The proof of $5^{\circ} - a$): By $3^{\circ}, 4^{\circ}$ and by Prop. 2.4.

The proof of $5^{\circ} - b$):

By $5^{\circ} - a$), by Prop. 2.2 – (b) and by ($\check{1}$) from 1.3, we have $\mathsf{E} = \mathbf{e}$. \Box

3.2. Theorem: Let $n \ge 2$ and let $(Q; A, {}^{-1}, \mathbf{e})$ be an n-group. Let also $B = {}^{-1}$ A. Then $(Q; B, \mathbf{e})$ is an nB-algebra.

Proof. 1) By Prop. 2.2 - (a) and by (o) from Prop. 2.4, we conclude that the (1) from Def. 1.3 holds in *n*-groupoid (Q; B).

2) Firstly, by (c) from Prop. 2.2 and by (o) from 2.4, we have $(a_1^{n-2}, y)^{-1} = B(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, y).$

Whence, by (γ) from Prop. 2.5, we conclude that the following equivalence holds

 $(\overline{\varepsilon}) \begin{cases} B(y, a_1^{n-2}, z) = u \Leftrightarrow \\ y = B(u, a_1^{n-2}, B(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, z)). \end{cases}$

Addition, by Prop. 2.5, (α) holds in *n*-groupoid (Q; B). Finally, put ($\overline{\varepsilon}$) in (α) , we have (2).

3) By $(\overline{\varepsilon})$, we obtain (3)

4) By Prop. 2.5, (β) holds in *n*-groupoid (Q; B). Put (1) in (β) , we have (**Ă**).

3.3. Remark: For n = 2 see, also [7].

4. References

- [1] W. Dörnte, Untersuchengen über einen verallgemeinerten Gruppenbegriff, Math. Z. **29**(1928), 1–19.
- [2] J. Ušan, Neutral operations of n-groupoids, (Russian), Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 18(1988) No. 2, 117-126.

- [3] J. Ušan, A comment on n-groups, Rev. of Research, Fac. of. Sci. Univ. of Novi Sad, Math. Ser. 24(1994) No. 1, 281–288.
- [4] J. Ušan, *n*-groups as variety of type $\langle n, n-1, n-2 \rangle$, in: Algebra and Model Theory, (A.G. Pinus and K.N. Ponomaryov, eds.) Novosibirsk 1997,182-208.
- [5] J. Ušan, n-groups as n-groupoids with laws, Quasigroups and Related Systems 4(1997), 67–76.
- [6] J.R. Cho and H.S. Kim, On B-algebras and quasigroups, Quasigroups and Related Systems 8(2001),1–6.
- [7] J. Ušan and M. Žižović, On B-algebras and groups, East Asian Math. J. 18(2002), No. 2, 205–209.
- [8] J. Ušan, n-groups in the light of the neutral operations, Math. Moravica, special Vol. (2003), monograph.

Institute of Mathematics University of Novi Sad Trg D. Obradovića 4, 21000 Novi Sad, Serbia & Montenegro

> Faculty of Tehnical Science University of Kragujevac, Svetog Save 65, 32000 Čačak, Serbia & Montenegro